Antimetastatic dsRNA mimics identified by live imaging of pathogenic neolymphangiogenesis

2019 
The crosstalk between cancer cells and the lymphatic vasculature has long been proposed to define competency for metastasis. Nevertheless, the discovery of selective blockers of lymphovascular niches has been compromised by the paucity of experimental systems for whole-body analyses of tumor progression. Here we present immunocompetent and immunodeficient mouse models for live imaging of melanoma-induced neolymphangiogenesis (driven by Vegfr3) as a cost-effective platform for drug screening in vivo. Spatio-temporal analyses in autochthonous melanomas and patient-derived xenografts identified double stranded RNA mimics (dsRNA nanoplexes) as potent repressors of lymphangiogenesis and metastasis. Mechanistically, dsRNA nanoplexes were found to suppress lymphangiogenic drivers in both tumor cells and their associated lymphatic vasculature (via MIDKINE and Vegfr3, respectively). This dual inhibitory action, driven by type I interferon, was not shared by FDA-approved antimelanoma treatments or by lymphangiogenic blockers in clinical testing. These results underscore the power of Vegfr3-lymphoreporters for pharmacological testing in otherwise aggressive cancers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    2
    Citations
    NaN
    KQI
    []