Automatic Ultrasound Guidance Based on Deep Reinforcement Learning

2019 
Ultrasound is becoming the modality of choice for everyday medical diagnosis, due to its mobility and decreasing price. As the availability of ultrasound diagnostic devices for untrained users grows, appropriate guidance becomes desirable. This kind of support could be provided by a software agent, who easily adapts to new conditions, and whose role is to instruct the user on how to obtain optimal settings of the imaging system during an examination. In this work, we verified the feasibility of implementing and training such an agent for ultrasound, taking the deep reinforcement learning approach. The tasks it was given were to find the optimal position of the transducer’s focal point (FP task) and to find an appropriate scanning plane (PP task). The ultrasound environment consisted of a linear-array transducer acquiring information from a tissue phantom with cysts forming an object-of-interest (OOI). The environment was simulated in the Field-II software. The agent could perform the following actions: move the position of the probe to the left/right, move focal depth upwards/downwards, rotate the probe clockwise/counter-clockwise, or do not move. Additional noise was applied to the current probe setting. The only observations the agent received were B-mode frames. The agent acted according to stochastic policy modeled by a deep convolutional neural network, and was trained using the vanilla policy gradient update algorithm. After the training, the agent’s ability to accurately locate the position of the focal depth and scanning plane improved. Our preliminary results confirmed that deep reinforcement learning can be applied to the ultrasound environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    5
    Citations
    NaN
    KQI
    []