Frequency Models and Control in Normal Operation: the Sardinia Case Study

2020 
Frequency signal is an indicator of the unbalance between the power generation and the load demand. Frequency power reserves in different timeframes are commonly deployed to keep this signal inside strict ranges around the nominal value. Reserves must be carefully dimensioned, and their dynamic performance correctly evaluated to enhance system security. This paper proposes a novel methodology to reproduce frequency fluctuations of entire days and to compute the power reserves activation dynamics by using a two-step process. Firstly, given a real power system frequency signal, a reverse aggregate model provides the unbalance in the system. Secondly, this unbalance is used to recreate and validate the original frequency signal by a forward aggregate model. After this procedure, Battery Energy Storage Systems (BESSs) are added and their impact on the frequency signal is quantified, in terms of different control schemes. The proposed method is tested in the real case of the Sardinian power system. Results show that this methodology can provide accurate estimation of the unbalance, frequency and reserves in the system, giving an understanding of the BESS impact on the frequency control.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    0
    Citations
    NaN
    KQI
    []