Bidirectional modulation of glutamatergic synaptic transmission by metabotropic glutamate type 7 receptors at Schaffer collateral–CA1 hippocampal synapses

2017 
KEY POINTS: Neurotransmitter release is inhibited by metabotropic glutamate type 7 (mGlu7 ) receptors that reduce Ca2+ influx, yet synapses lacking this receptor also produce weaker release, suggesting that mGlu7 receptors may also prime synaptic vesicles for release. Prolonged activation of mGlu7 receptors with the agonist l-AP4 first reduces and then enhances the amplitude of EPSCs through a presynaptic effect. The inhibitory response is blocked by pertussis toxin, while the potentiating response is prevented by a phospholipase C inhibitor (U73122) and an inhibitor of diacylglycerol (DAG) binding (calphostin C), suggesting that this receptor also couples to pathways that generate DAG. Release potentiation is associated with an increase in the number of synaptic vesicles close to the plasma membrane, which was dependent on the Munc13-2 and RIM1α proteins. The Glu7 receptors activated by the glutamate released following high frequency stimulation provoke a bidirectional modulation of synaptic transmission. ABSTRACT: Neurotransmitter release is driven by Ca2+ influx at synaptic boutons that acts on synaptic vesicles ready to undergo exocytosis. Neurotransmitter release is inhibited when metabotropic glutamate type 7 (mGlu7 ) receptors provoke a reduction in Ca2+ influx, although the reduced release from synapses lacking this receptor suggests that they may also prime synaptic vesicles for release. These mGlu7 receptors activate phospholipase C (PLC) and generate inositol trisphosphate, which in turn releases Ca2+ from intracellular stores and produces diacylglycerol (DAG), an activator of proteins containing DAG-binding domains such as Munc13 and protein kinase C (PKC). However, the full effects of mGlu7 receptor signalling on synaptic transmission are unclear. We found that prolonged activation of mGlu7 receptors with the agonist l-AP4 first reduces and then enhances the amplitude of EPSCs, a presynaptic effect that changes the frequency but not the amplitude of the mEPSCs and the paired pulse ratio. Pertussis toxin blocks the inhibitory response, while the PLC inhibitor U73122, and the inhibitor of DAG binding calphostin C, prevent receptor mediated potentiation. Moreover, this DAG-dependent potentiation of the release machinery brings more synaptic vesicles closer to the active zone plasma membrane in a Munc13-2- and RIM1α-dependent manner. Electrically evoked release of glutamate that activates mGlu7 receptors also bidirectionally modulates synaptic transmission. In these conditions, potentiation now occurs rapidly and it overcomes any inhibition, such that potentiation prevails unless it is suppressed with the PLC inhibitor U73122.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    10
    Citations
    NaN
    KQI
    []