Functional Characterization of Mouse Organic Anion Transporting Peptide 1a4 in the Uptake and Efflux of Drugs Across the Blood-Brain Barrier

2010 
This study investigated the role of a multispecific organic anion transporter, Oatp1a4/ Slco1a4 , in drug transport across the blood-brain barrier. In vitro transport studies using human embryonic kidney 293 cells expressing mouse Oatp1a4 identified the following compounds as Oatp1a4 substrates: pitavastatin ( K m = 8.3 μM), rosuvastatin ( K m = 12 μM), pravastatin, taurocholate ( K m = 40 μM), digoxin, ochratoxin A, and [d-penicillamine2,5]-enkephalin. Double immunohistochemical staining of Oatp1a4 with P-glycoprotein (P-gp) or glial fibrillary acidic protein demonstrated that Oatp1a4 signals colocalized with P-gp signals partly but not with glial fibrillary acidic protein, suggesting that Oatp1a4 is expressed in both the luminal and the abluminal membranes of mouse brain capillary endothelial cells. The brain-to-blood transport of pitavastatin, rosuvastatin, pravastatin, and taurocholate after microinjection into the cerebral cortex was significantly decreased in Oatp1a4 (−/−) mice compared with that in wild-type mice. The blood-to-brain transport of pitavastatin, rosuvastatin, taurocholate, and ochratoxin A, determined by in situ brain perfusion, was significantly lower in Oatp1a4 (−/−) mice than in wild-type mice, whereas transport of pravastatin and [d-penicillamine2,5]-enkephalin was unchanged. The blood-to-brain transport of digoxin was significantly lower in Oatp1a4 (−/−) mice than in wild-type mice only when P-gp was inhibited by N -(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918). Taken together, these results show that Oatp1a4 can mediate the brain-to-blood and blood-to-brain transport of its substrate drugs across the blood-brain barrier. The brain-to-plasma ratio of taurocholate, pitavastatin, and rosuvastatin was close to the capillary volume in wild-type mice, and it was not affected by Oatp1a4 dysfunction. Whether Oatp1a4 can deliver drugs from the blood to the brain remains controversial.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    114
    Citations
    NaN
    KQI
    []