The Intricate Determination of Magnetic Anisotropy in Quasi-octahedral Vanadium(III): An HF-EPR and Magnetic Study

2020 
We report here the synthesis and a preliminary characterization of the tetranuclear complex of formula [Ga3V(LEt)2(dpm)6], Ga3VEt, in which H3LEt = 2-Ethyl-2-(hydroxymethyl)-propane-1,3-diol and Hdpm = dipivaloylmethane, containing a single paramagnetic vanadium(III) center, from a structural, magnetic, and spectroscopic point of view. Structural characterization by X-ray diffraction evidenced that this derivative is isostructural with the star-shaped Single-Molecule Magnet [Fe3V(LEt)2(dpm)6], Fe3VEt, and can, thus, be considered a model to analyze the magnetic anisotropy of the vanadium(III) ion in that system. The observed results confirm the complexity in obtaining a rationalization of the magnetic behavior of this metal ion, with magnetization data and High Field Electron Paramagnetic Resonance (HF-EPR) spectroscopy providing apparently conflicting results. Indeed, the former were rationalized assuming a rhombic distortion of the ligand field and a dominant easy-axis type anisotropy (equivalent to D ≈ −14.1 cm−1, E ≈ 1.2 cm−1), while a simple axial Spin Hamiltonian approach could explain HF-EPR data (|D| ≈ 6.98 cm−1).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    0
    Citations
    NaN
    KQI
    []