Resonance Production and $\pi\pi$ S-wave in $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{recoil}$ at 190 GeV/c

2015 
The COMPASS collaboration has collected the currently largest data set on diffractively produced $\pi^-\pi^-\pi^+$ final states using a negative pion beam of 190 GeV/c momentum impinging on a stationary proton target. This data set allows for a systematic partial-wave analysis in 100 bins of three-pion mass, $0.5 < m_{3\pi} < 2.5$ GeV/c$^2$ , and in 11 bins of the reduced four-momentum transfer squared, $0.1 < t < 1.0$ (GeV/c)$^2$ . This two-dimensional analysis offers sensitivity to genuine one-step resonance production, i.e. the production of a state followed by its decay, as well as to more complex dynamical effects in nonresonant $3\pi$ production. In this paper, we present detailed studies on selected $3\pi$ partial waves with $J^{PC} = 0^{-+}$, $1^{++}$, $2^{-+}$, $2^{++}$, and $4^{++}$. In these waves, we observe the well-known ground-state mesons as well as a new narrow axial-vector meson $a_1(1420)$ decaying into $f_0(980) \pi$. In addition, we present the results of a novel method to extract the amplitude of the $\pi^-\pi^+$ subsystem with $I^{G}J^{PC} = 0^+ 0^{++}$ in various partial waves from the $\pi^-\pi^-\pi^+$ data. Evidence is found for correlation of the $f_0(980)$ and $f_0(1500)$ appearing as intermediate $\pi^- \pi^+$ isobars in the decay of the known $\pi(1800)$ and $\pi_2(1880)$.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    39
    Citations
    NaN
    KQI
    []