Self-Immolative Spacers: Kinetic Aspects, Structure–Property Relationships, and Applications

2015 
Self-immolative spacers are covalent assemblies tailored to correlate the cleavage of two chemical bonds after activation of a protective part in a precursor: Upon stimulation, the protective moiety is removed, which generates a cascade of disassembling reactions leading to the temporally sequential release of smaller molecules. Originally introduced to overcome limitations for drug delivery, self-immolative spacers have gained wide interest in medicinal chemistry, analytical chemistry, and material science. For most applications, the kinetics of the disassembly of the activated self-immolative spacer governs functional properties. This Review addresses kinetic aspects of self-immolation. It provides information for selecting a particular self-immolative motif for a specific demand. Moreover, it should help researchers design kinetic experiments and fully exploit the rich perspectives of self-immolative spacers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    147
    References
    177
    Citations
    NaN
    KQI
    []