Cost-Effectiveness of MODY Genetic Testing: Translating Genomic Advances Into Practical Health Applications

2014 
Objective To evaluate the cost-effectiveness of a genetic testing policy for HNF1A , HNF4A and GCK -MODY in a hypothetical cohort of type 2 diabetes patients 25-40 years old with a MODY prevalence of 2%. Research Design and Methods We used a simulation model of type 2 diabetes complications based on UKPDS data, modified to account for the natural history of disease by genetic subtype, to compare a policy of genetic testing at diabetes diagnosis versus a policy of no testing. Under the screening policy, successful sulfonylurea treatment of HNF1A -MODY and HNF4A -MODY was modeled to produce a glycosylated hemoglobin reduction of -1.5%, compared to usual care. GCK -MODY received no therapy. Main outcome measures were costs and quality-adjusted life years (QALYs), based on lifetime risk of complications and treatments, expressed as the incremental cost-effectiveness ratio (ICER, $/QALY). Results The testing policy yielded an average gain of 0.012 QALYs and resulted in an ICER of $205,000. Sensitivity analysis showed that if the MODY prevalence was 6%, the ICER would be ∼$50,000. If MODY prevalence was >30%, the testing policy was cost-saving. Reducing genetic testing costs to $700 also resulted in an ICER of ∼$50,000. Conclusions Our simulated model suggests a policy of testing for MODY in selected populations is cost-effective for the United States based on contemporary ICER thresholds. Higher prevalence of MODY in the tested population or decreased testing costs would enhance cost-effectiveness. Our results make a compelling argument for routine coverage of genetic testing in patients with high clinical suspicion of MODY.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    73
    Citations
    NaN
    KQI
    []