Design of Modular Neural Networks with Fuzzy Integration Applied to Time Series Prediction

2007 
We describe in this paper the application of several neural network architectures to the problem of simulating and predicting the dynamic behavior of complex economic time series. We use several neural network models and training algorithms to compare the results and decide at the end, which one is best for this application. We also compare the simulation results with the traditional approach of using a statistical model. In this case, we use real time series of prices of consumer goods to test our models. Real prices of tomato and green onion in the U.S. show complex fluctuations in time and are very complicated to predict with traditional statistical approaches.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    14
    Citations
    NaN
    KQI
    []