Deep Transfer Learning for Cross-subject and Cross-experiment Prediction of Image Rapid Serial Visual Presentation Events from EEG Data

2017 
Transfer learning (TL) has gained significant interests recently in brain computer interface (BCI) as a key approach to design robust predictors for cross-subject and cross-experiment prediction of the brain activities in response to cognitive events. We carried out in this.aper the first comprehensive investigation of the transferability of deep convolutional neural network (CNN) for cross-subject and cross-experiment prediction of image Rapid Serial Visual Presentation (RSVP) events. We show that for both cross-subject and cross-experiment predictions, all convolutional layers and fully connected layers contain both general and subject/experiment-specific features and transfer learning with weights fine-tuning can improve the prediction performance over that without transfer. However, for cross-subject prediction, the convolutional layers capture more subject-specific features, whereas for cross-experiment prediction, the convolutional layers capture more general features across experiment. Our study provides important information that will guide the design of more sophisticated deep transfer learning algorithms for EEG based classifications in BCI applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    16
    Citations
    NaN
    KQI
    []