Hypusine Is Required for a Sequence-specific Interaction of Eukaryotic Initiation Factor 5A with Postsystematic Evolution of Ligands by Exponential Enrichment RNA

2001 
Abstract Hypusine is formed through a spermidine-dependent posttranslational modification of eukaryotic initiation factor 5A (eIF-5A) at a specific lysine residue. The reaction is catalyzed by deoxyhypusine synthase and deoxyhypusine hydroxylase. eIF-5A is the only protein in eukaryotes and archaebacteria known to contain hypusine. Although both eIF-5A and deoxyhypusine synthase are essential genes for cell survival and proliferation, the precise biological function of eIF-5A is unclear. We have previously proposed that eIF-5A may function as a bimodular protein, capable of interacting with protein and nucleic acid (Liu, Y. P., Nemeroff, M., Yan, Y. P., and Chen, K. Y. (1997)Biol. Signals 6, 166–174). Here we used the method of systematic evolution of ligands by exponential enrichment (SELEX) to identify the sequence specificity of the potential eIF-5A RNA targets. The post-SELEX RNA obtained after 16 rounds of selection exhibited a significant increase in binding affinity for eIF-5A with an apparent dissociation constant of 1 × 10− 7 m. The hypusine residue was found to be critical for this sequence-specific binding. The post-SELEX RNAs shared a high sequence homology characterized by two conserved motifs, UAACCA and AAUGUCACAC. The consensus sequence was determined as AAAUGUCACAC by sequence alignment and binding studies. BLAST analysis indicated that this sequence was present in >400 human expressed sequence tag sequences. The C terminus of eIF-5A contains a cold shock domain-like structure, similar to that present in cold shock protein A (CspA). However, unlike CspA, the binding of eIF-5A to either the post-SELEX RNA or the 5′-untranslated region of CspA mRNA did not affect the sensitivity of these RNAs to ribonucleases. These data suggest that the physiological significance of eIF-5A-RNA interaction depends on hypusine and the core motif of the target RNA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    86
    Citations
    NaN
    KQI
    []