Functional characterization of the heterodimeric sweet taste receptor T1R2 and T1R3 from a New World monkey species (squirrel monkey) and its response to sweet-tasting proteins

2012 
The family C G protein-coupled receptor (GPCR) T1R2 and T1R3 heterodimer functions as a broadly acting sweet taste receptor. Perception of sweet taste is a species-dependent physiological process. It has been widely reported that New World monkeys and rodents can not perceive some of the artificial sweeteners and sweet-tasting proteins that can be perceived by humans, apes, and Old World monkeys. Until now, only the sweet receptors of humans, mice and rats have been functionally characterized. Here we report characterization of the sweet taste receptor (T1R2/T1R3) from a species of New World squirrel monkey. Our results show that the heterodimeric receptor of squirrel monkey does not respond to artificial sweeteners aspartame, neotame, cyclamate, saccharin and sweet-tasting protein monellin, but surprisingly, it does respond to thaumatin at high concentrations (>18 μM). This is the first report that New World monkey species can perceive some specific sweet-tasting proteins. Furthermore, the receptor responses to the sweeteners cannot be inhibited by the sweet inhibitor lactisole. We compared the response differences of the squirrel monkey and human receptors and found that the residues in T1R2 determine species-dependent sweet taste toward saccharin, while the residues in either T1R2 or T1R3 are responsible for the sweet taste difference between humans and squirrel monkeys toward monellin. Molecular models indicated that electrostatic properties of the receptors probably mediate the species-dependent response to sweet-tasting proteins.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    14
    Citations
    NaN
    KQI
    []