Effects of Decaying Hydraulic Conductivity on the Groundwater Flow Processes in a Managed Aquifer Recharge Area in an Alluvial Fan

2021 
Groundwater artificial recharge and medium characteristics represent the major factors in controlling the groundwater flow processes in managed aquifer recharge areas. According to the depositional features of alluvial fans, an analogous homogeneous phreatic sand tank aquifer and the corresponding inhomogeneous scale numerical models were established to investigate the groundwater flow under the combined influence of artificial recharge (human activities) and decaying hydraulic conductivity (medium characteristics). In this study, groundwater flow through a managed aquifer recharge area in an alluvial fan was analyzed under the conditions of decaying hydraulic conductivity (K) with depth or length from apex to apron. The results showed that groundwater flow processes induced by artificial recharge were significantly controlled by the increasing decay exponents of K. The decaying K with depth or length in alluvial fan areas expanded the degree of influence of artificial recharge on groundwater flow. With the increase of decay exponents, the flow directions gradually changed from a horizontal to vertical direction. Groundwater age and spatial variability could also be increased by the increasing decay exponents. The residence time distributions (RTDs) of ambient groundwater and artificially recharged water exhibited logarithmic, exponential, and power law behavior. Penetration depth and travel times of ambient groundwater flow could be affected by artificial recharge and decay exponents. Furthermore, with the increase of decay exponents, the thickness of the artificially recharged water lens and travel times of artificially recharged water were increased. These findings have important implications for the performance of managed aquifer recharge in alluvial fan areas as well as the importance of considering the gradual decrease of K with depth and length.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    1
    Citations
    NaN
    KQI
    []