Irreversibility and rate dependence in sheared adhesive suspensions

2021 
Recent experiments report that slowly-sheared noncolloidal particle suspensions can exhibit unexpected rate($\omega$)-dependent complex viscosities in oscillatory shear, despite a constant relative viscosity in steady shear. Using a minimal hydrodynamic model, we show that a weak interparticle attraction reproduces this behavior. At volume fractions $\phi=20\sim50$%, the complex viscosities in both experiments and simulations display power-law reductions in shear, with a $\phi$-dependent exponent maximum at $\phi=40$%, resulting from the interplay between hydrodynamic, collision and adhesive interactions. Furthermore, this rate dependence is accompanied by diverging particle diffusivities and pronounced cluster formations even at small oscillation amplitudes $\gamma_0$. Previous studies established that suspensions transition from reversible absorbing states to irreversible diffusing states when $\gamma_0$ exceeds a $\phi$-dependent critical value $\gamma_{0,\phi}^c$. Here, we show that a second transition to irreversibility occurs below an $\omega$-dependent critical amplitude, $\gamma_{0,\omega}^c \leq \gamma_{0,\phi}^c$, in the presence of weak attractions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    0
    Citations
    NaN
    KQI
    []