Microwave absorbing property and complex permittivity and permeability of graphene–CdS nanocomposite

2014 
Abstract The graphene–CdS (G–CdS) nanocomposite with enhanced microwave absorption was directly synthesized from graphene oxide (GO) via a facile hydrothermal approach, during which the formation of CdS nanoparticles and the reduction of GO occured simultaneously. The morphology, structure, microwave absorbing property, complex permittivity and permeability of G–CdS nanocomposite were systematically investigated by transmission electron microscope, X-ray diffraction and the coaxial line method. The complex permittivity of G–CdS nanocomposite presents triple dielectric relaxations with constructing a good structural graphene–CdS interface. The triple dielectric relaxations were critical to improve the microwave absorption of G–CdS nanocomposite. The G–CdS nanocomposite achieved a reflection loss below –10 dB in the frequency range of 5.2–18 GHz when adjusting the thicknesses from 2 to 5 mm, which was mainly ascribed to the proper electromagnetic matching of the CdS nanoparticles and graphene sheets, and the triple dielectric relaxations. The G–CdS nanocomposite is promising as a lightweight and wide-frequency microwave absorber.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    35
    Citations
    NaN
    KQI
    []