Changes in ocular torsion position produced by a single visual line rotating around the line of sight--visual "entrainment" of ocular torsion.

2004 
Abstract A large- or full-field visual stimulus slowly rotating around the naso-occipital axis of an observer causes both eyes to tort, and many of the factors controlling this optokinetic torsional response have been identified. The present study reports that a single line rotating about the line of sight can cause both eyes to tort in the same direction as the stimulus but with a low gain. We have used the term ‘entrainment’ to describe this torsional response. This paper reports some of the factors associated with entrainment. Video measures of 3-d eye position were recorded while the subject made settings of a simple visual line to subjective visual horizontal (SVH) and vertical (SVV) using the standard method-of-adjustment paradigm. The visual line was composed of 11 light-emitting diodes; the line subtended a visual angle of 19°, and moved at a constant speed of 4.8°/s. Settings were made in an otherwise darkened room, and also in the light. Subjects were required to maintain fixation of the central LED while making settings from starting positions 10 or 20 degrees either side of gravitational horizontal or vertical. We show that entrainment of ocular torsion by the single moving visual line is low in gain but a reliable and repeatable effect and that (1) there are considerable individual differences between subjects but within-subject consistency, (2) all subjects show larger and more consistent torsional entrainment for lines moving to SVH than lines moving to SVV, (3) the strongest entrainment generally occurs within about 10° of the target position, and (4) entrainment is also present in the light, though with slightly reduced gain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    31
    Citations
    NaN
    KQI
    []