Identification of a missense ARSA mutation in metachromatic leukodystrophy and its potential pathogenic mechanism.

2020 
BACKGROUND Metachromatic leukodystrophy (MLD) is a rare inherited lysosomal disorder caused by mutations in ARSA. The biological processes of MLD disease caused by candidate pathogenic mutations in the ARSA gene remain unclear. METHODS We used whole-exome sequencing (WES) and Sanger sequencing to identify the pathogenic mutation in a Chinese family. Literature review and protein three-dimensional structure prediction were performed to analyze the potential pathogenesis of the identified mutations. Overexpression cell models of wild-type and mutated ARSA genes were constructed. The accumulated sulfatides and expression profiles in the cell models were detected, and a series of bioinformatics analyses were carried out to compare the biological changes caused by the candidate pathogenic mutations. RESULTS We identified an ARSA c.925G>A homozygous mutation from a Chinese late-infantile MLD patient, the first report of this mutation in East Asia. The literature and protein structure analysis indicated that three types of mutations at c.925G (c.925G>A, c.925G>T, c.925G>C) were pathogenic. The overexpression of wild-type or mutated ARSA genes influenced the accumulation of sulfatides. The co-expression modules in the mutated cell models were constructed by genes related to calcium signaling and vesicle transport. CONCLUSION Our results identified a pathogenic mutation, ARSA homozygosity c.925G>A, from a Chinese MLD family. The pathogenic mechanism of the ARSA mutation in MLD was identified, which may suggest new approaches to diagnosis and treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []