Qualification Pathways for Additively Manufactured Components for Nuclear Applications

2021 
Abstract This research paper evaluated three pathways for qualification of 316 L stainless steel components made by laser powder bed fusion additive manufacturing (AM). Comprehensive and consistent process flows with computational modeling, in-situ measurements, ex-situ characterization and mechanical testing with simple- and complex- geometries were explored. The role of post-process hot isostatic pressing (HIP), and solution anneal treatment were evaluated. By using HIP, the scatter in 316 L steel AM properties within single and complex components was minimized to meet the requirement of existing industry standards. For applications where HIP may not be feasible and with some extent of defect tolerance, alternative qualification methodologies of deploying l -PBF AM parts were also explored with samples made with and without engineered porosities. The data generated in this research will be relevant to deployment of AM components for emerging nuclear energy applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    111
    References
    0
    Citations
    NaN
    KQI
    []