Topological polaritons from photonic Dirac cones coupled to excitons in a magnetic field
2016
We introduce an alternative scheme for creating topological polaritons (topolaritons) by exploiting the presence of photonic Dirac cones in photonic crystals with triangular lattice symmetry. As recently proposed, topolariton states can emerge from a coupling between photons and excitons combined with a periodic exciton potential and a magnetic field to open up a topological gap. We show that in photonic crystals the opening of the gap can be substantially simplified close to photonic Dirac points. Coupling to Zeeman-split excitons breaks time reversal symmetry and allows to gap out the Dirac cones in a nontrival way, leading to a topological gap similar to the strength of the periodic exciton potential. Compared to the original topolariton proposal [T. Karzig et al., Phys. Rev. X 5, 031001 (2015)], this scheme significantly increases the size of the topological gap over a wide range of parameters. Moreover, the gap opening mechanism highlights an interesting connection between topolaritons and the scheme of [F. D. M. Haldane and S. Raghu, Phys. Rev. Lett. 100, 013904 (2008)] to create topological photons in magneto-optically active materials.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
30
References
20
Citations
NaN
KQI