Neuroplastic changes in auditory cortex induced by long-duration "non-traumatic" noise exposures are triggered by deficits in the neural output of the cochlea.

2021 
Abstract Long-term exposure to moderate intensity noise that does not cause measureable hearing loss can cause striking changes in sound-evoked neural activity in auditory cortex.  It is unclear if these changes originate in the cortex or result from functional deficits in the neural output of the cochlea.  To explore this issue, rats were exposed for 6-weeks to 18–24 kHz noise at 45, 65 or 85 dB SPL and then compared the noise-induced changes in the cochlear compound action potential (CAP) with the neurophysiological alterations in the anterior auditory field (AAF) of auditory cortex. The 45-dB exposure, which had no effect on the cochlear CAP also had no effect on the AAF. In contrast, the 85-dB exposure greatly reduced CAP amplitudes at high frequencies, but had little or no effect on low frequencies. Despite the large reduction in high-frequency CAP neural responses, high frequency AAF neural responses (spike rate and local field potential amplitude) remained largely within normal limits, evidence of central gain compensation. AAF responses were also enhanced at the low frequencies even though CAP responses were normal; this AAF hyperactivity only occurred at low-moderate intensities (level-dependent enhanced central gain). The 65-dB exposure also caused a moderate reduction in high-frequency CAP amplitudes. Notwithstanding this cochlear loss, AAF responses were boosted into the normal range, evidence of homeostatic gain compensation. Our results suggest that the noise-induced neuroplastic changes in the auditory cortex from so-called “non-traumatic” exposures are triggered from functional deficits in the neural output of the cochlea.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    0
    Citations
    NaN
    KQI
    []