Long-Range Lateral Dopant Diffusion in Tungsten Silicide Layers

2009 
Novel diode test structures have been manufactured to characterize long-range dopant diffusion in tungsten silicide layers. A tungsten silicide to p-type silicon contact has been characterized as a Schottky barrier rectifying contact with a silicide work function of 4.8 eV. Long-range diffusion of boron for an anneal at 900degC for 30 min has been shown to alter this contact to become ohmic. Long-range diffusion of phosphorus with a similar anneal alters the contact to become a bipolar n-p diode. Bipolar diode action is demonstrated experimentally for anneal schedules of 30 min at 900deg C, indicating long-range diffusion of phosphorus ( ~ 38 mum). SIMS analysis shows dopant redistribution is adversely affected by segregation to the silicide/oxide interface. The concept of conduit diffusion has been demonstrated experimentally for application in advanced bipolar transistor technology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    0
    Citations
    NaN
    KQI
    []