Production of secretory IgA antibodies in plants
2001
Abstract Functional antibodies produced in tobacco plants were first reported over a decade ago (1989). The basic protocol used to generate these ‘plantibodies’ involved the independent cloning of H and L chain antibody genes in Agrobacterium tumefaciens vectors, the transformation of plant tissue in vitro with the recombinant bacterium, the reconstitution of whole plants expressing individual chains, and their sexual cross. In a ‘Mendelian’ fashion, a fully assembled and functional antibody was recovered from plant tissue in some double-transgenic plants. In mammalian cells, the antibody H and L chains are produced as precursor proteins that are translocated into the endoplasmic reticulum (ER), under the guidance of signal sequences. Within the ER, the signal peptides are proteolytically cleaved, and several stress proteins act as chaperonins to bind the unassembled antibody chains, and direct subsequent folding and tetramer formation. A similar process occurs in plant cells, and expression can be directed via signal sequences (even of foreign origin) into the aqueous environment of the apoplasm, or to be accumulated in other specific plant tissues, including tubers, fruit, or seed. Plants can facilely assemble secretory IgA, which is comprised of four chains, H and L chains, J chain and secretory component. Plant ‘bioreactors’ are expected to yield over 10 kg of therapeutic antibody/acre in tobacco, maize, soybean, and alfalfa [(Ann. NY Acad. Sci.)721(1994)235; (Biotechnol. Bioeng.)20(1999)135 ]. Compared with conventional steel tank bioreactors using mammalian cells, or microorganisms, the costs of GMP plantibodies are expected to perhaps one tenth. The differences in glycosylation patterns of plant and mammalian cell produced antibodies apparently have no effect on antigen-binding or specificity, but there is some concern about potential immunogenicity in humans. N-linked glycans of plants differ from human by having fucose-linked alpha 1,3 and the sugar xylose. No adverse effects or human anti-mouse antibodies (HAMA) have been observed in >40 patients receiving topical oral application of a plant produced secretory IgA specific to Streptococcus mutans, for the control of caries [(Nat. Med.)4(1998)601]. The progressive improvement of expression vectors for plantibodies, and purification strategies, as well as the increase in transformable crop species, is expected to lead to almost limitless availability of inexpensive (even edible forms of) recombinant immunoglobulins free of human pathogens for human and animal therapy, and for novel industrial applications (e.g. catalytic antibodies).
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
64
References
102
Citations
NaN
KQI