Effects of dust layers on thermal emission from airless bodies
2019
We have investigated the influence of thin thermally opaque dust layers on the thermal emission of rocks and regolith and determined the thermal response of these dust-covered surfaces to diurnal insolation cycles. Results are computed for Hayabusa2’s target asteroid (162173) Ryugu, which was observed by thermal infrared instruments on the orbiter and in situ. We show that even a very thin (10..100 μm) fine-grained porous dust layer with thermal inertia of 25 J m−2 K−1 s−1/2 can have a significant influence on surface temperatures and alter the apparent thermal inertia of the underlying material derived under the simplified assumption of a homogenous half space by more than 20%. The masking of the underlying material is complete at about 1 diurnal skin depth, corresponding to ~ 10 mm on Ryugu. Between 0.1 and 1 diurnal skin depths, we find a thermal lag smaller than what would be predicted for a surface consisting of dust only.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
45
References
9
Citations
NaN
KQI