Measurement and Entanglement Phase Transitions in All-To-All Quantum Circuits, on Quantum Trees, and in Landau-Ginsburg Theory

2021 
Quantum many-body systems subjected to local measurements at a nonzero rate can be in distinct dynamical phases, with differing entanglement properties. We introduce theoretical approaches to measurement-induced phase transitions (MPT) and also to entanglement transitions in random tensor networks. Many of our results are for "all-to-all" quantum circuits with unitaries and measurements, in which any qubit can couple to any other, and related settings where some of the complications of low-dimensional models are reduced. We also propose field theory descriptions for spatially local systems of finite dimensionality. To build intuition, we first solve the simplest "minimal cut" toy model for entanglement dynamics in all-to-all circuits, finding scaling forms and exponents within this approximation. We then show that certain all-to-all measurement circuits allow exact results by exploiting the circuit's local tree-like structure. For this reason, we make a detour to give universal results for entanglement phase transitions in a class of random tree tensor networks, making a connection with the classical theory of directed polymers on a tree. We then compare these results with numerics in all-to-all circuits, both for the MPT and for the simpler "Forced Measurement Phase Transition" (FMPT). We characterize the two different phases in all-to-all circuits using observables that are sensitive to the amount of information propagated between the initial and final time. We demonstrate signatures of the two phases that can be understood from simple models. Finally we propose Landau-Ginsburg-Wilson-like field theories for the MPT, the FMPT, and for entanglement transitions in tensor networks. This analysis shows a surprising difference between the MPT and the other cases. We discuss variants of the measurement problem with additional structure, and questions for the future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    111
    References
    33
    Citations
    NaN
    KQI
    []