A novel augmented venous-drainage model of cardiopulmonary bypass for deep hypothermic circulatory arrest without blood priming

2018 
Objective:Cardiopulmonary bypass (CPB) and deep hypothermic circulatory arrest (DHCA) are commonly used in cardiac surgery. However, the mortality and morbidity are still high in practice. Developing novel protective stategies and elucidating the underlying mechanisms for the pathophysiological consequences of DHCA have been hampered because of the absence of a satisfactory recovery animal model. The aim of this study was to establish a novel and safe DHCA model without blood priming in rats to study the pathophysiology of potential complications.Methods:Ten adult male Sprague-Dawley rats (age, 14-16 weeks; weight, 200-300g) were used. The entire CPB circuit consisted of a modified reservoir, a custom-designed small-volume membrane oxygenator, a roller pump and a home-made heat exchanger, all of which were connected via silicon tubing. The volume of the priming solution was less than 10 ml. The right jugular vein, right carotid artery and left femoral artery were cannulated. The blood was drained from the...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    1
    Citations
    NaN
    KQI
    []