Cell-type specific signal transduction and gene regulation via mitogen-activated protein kinase pathway in catecholaminergic neurons by restraint stress.

2004 
It has been demonstrated that tyrosine hydroxylase (TH) gene is easily regulated in the CNS as well as peripheral nervous systems by stressful conditions. The stimuli, such as stress or reserpine administration, significantly increased the TH gene in noradrenergic neurons in the locus ceruleus (LC), but not in dopaminergic neurons in the substantia nigra (SN). To explore the molecular mechanisms governing differential TH gene regulation in catecholaminergic cells, the present study investigated the regulation of immediate early gene (c-Fos), transcription factors (pCREB, CREB binding protein [CBP]), mitogen-activated protein (MAP) kinases (phospho-extra-cellular regulated kinase [pERK]1/2, phospho-p38 MAP kinase [p-p38 MAPK], phospho-c-Jun N-terminal kinase [pJNK]) in the LC and SN in control conditions and in response to 2 h restraint stress (RS). Significant induction of c-Fos expression was observed in the LC, but not in the SN. In addition, pERK1/2 significantly increased following 2 h RS specifically in the LC, but not in the SN. No significant change was observed in p-p38 MAPK and pJNK. The expression of c-Fos and pERK1/2 preceded the upregulation of TH in the LC. Furthermore, pCREB and CBP also increased in the LC in response to 2 h RS. The induction of c-Fos prior to TH, in conjunction with the upregulation of pCREB and CBP in the LC, suggests that activator protein 1 and CRE transcription sites in the TH gene may be involved in the cell-type specific activation in the stress response, at least, by pERK1/2.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    19
    Citations
    NaN
    KQI
    []