Injectable thiol-ene hydrogel of galactoglucomannan and cellulose nanocrystals in delivery of therapeutic inorganic ions with embedded bioactive glass nanoparticles

2022 
Abstract We propose an injectable nanocomposite hydrogel that is photo-curable via light-induced thiol-ene addition between methacrylate modified O-acetyl-galactoglucomannan (GGMMA) and thiolated cellulose nanocrystal (CNC-SH). Compared to free-radical chain polymerization, the orthogonal step-growth of thiol-ene addition allows a less heterogeneous hydrogel network and more rapid crosslinking kinetics. CNC-SH reinforced the GGMMA hydrogel as both a nanofiller and a crosslinker to GGMMA resulting in an interpenetrating network via thiol-ene addition. Importantly, the mechanical stiffness of the GGMMA/CNC-SH hydrogel is mainly determined by the stoichiometric ratio between the thiol groups on CNC-SH and the methacrylate groups in GGMMA. Meanwhile, the bioactive glass nanoparticle (BaGNP)-laden hydrogels of GGMMA/CNC-SH showed a sustained release of therapeutic ions in simulated body fluid in vitro, which extended the bioactive function of hydrogel matrix. Furthermore, the suitability of the GGMMA/CNC-SH formulation as biomaterial resin to fabricate digitally designed hydrogel constructs via digital light processing (DLP) lithography printing was evaluated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    0
    Citations
    NaN
    KQI
    []