The implicit calculus: a new foundation for generic programming

2012 
Generic programming (GP) is an increasingly important trend in programming languages. Well-known GP mechanisms, such as type classes and the C++0x concepts proposal, usually combine two features: 1) a special type of interfaces; and 2) implicit instantiation of implementations of those interfaces. Scala implicits are a GP language mechanism, inspired by type classes, that break with the tradition of coupling implicit instantiation with a special type of interface. Instead, implicits provide only implicit instantiation, which is generalized to work for any types . This turns out to be quite powerful and useful to address many limitations that show up in other GP mechanisms. This paper synthesizes the key ideas of implicits formally in a minimal and general core calculus called the implicit calculus (λ⇒), and it shows how to build source languages supporting implicit instantiation on top of it. A novelty of the calculus is its support for partial resolution and higher-order rules (a feature that has been proposed before, but was never formalized or implemented). Ultimately, the implicit calculus provides a formal model of implicits, which can be used by language designers to study and inform implementations of similar mechanisms in their own languages.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    34
    Citations
    NaN
    KQI
    []