Suppression of Premature Ignition in the Premixed Inlet Flow of a Shcramjet

2005 
This paper addresses the problem of premature ignition in a shock induced combustion ramjet (shcramjet) inlet. Previous studies have developed fuel injectors and inlet configurations that maximize the mixing efficiency in a shcramjet inlet while maintaining inlet losses at a minimum. A chemically reacting study of previously recommended shcramjet inlets finds premature ignition to occur primarily in the boundary layer in the last 15% of the inlet, spreading into the core flow prior to the inlet exit. Both gaseous nitrogen and additional hydrogen are then injected into the inlet flowfield in an attempt to suppress the flame. Various inflow conditions are considered, and injected using various geometries. Premature ignition is suppressed most feasibly by the injection of additional hydrogen through a backward facing step (slot injector) located just before the second inlet shock, such that the global equivalence ratio of the premixed flow exiting the inlet is one. The performance of the original inlet remains unaltered and the frictional force on the inlet wall is reduced by 10% due to the hydrogen slot injection. All turbulent, chemically reacting, three dimensional, mixing flowfields are solved using the WARP code which solves the FANS equations closed by the Wilcox kω turbulence model and the Wilcox dilatational dissipation correction. Chemical kinetics are modeled by a 9 species, 20 reaction model by Jachimowski.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    38
    Citations
    NaN
    KQI
    []