Evaluation of hemostasis and endothelial function in patients with paroxysmal nocturnal hemoglobinuria receiving eculizumab

2010 
Background Paroxysmal nocturnal hemoglobinuria (PNH) is associated with an increased risk of thrombosis through unknown mechanisms. Design and Methods We studied 23 patients with PNH, before and after five and 11 weeks of treatment with eculizumab. We examined markers of thrombin generation and reactional fibrinolysis (prothrombin fragment 1+2 (F1+2), D-dimers, and plasmin antiplasmin complexes (P-AP), and endothelial dysfunction tissue plasminogen activator (t-PA), plasminogen activator inhibitor (PAI-1), soluble thrombomodulin (sTM), intercellular adhesion molecule 1 (sICAM-1), vascular cell adhesion molecule (sVCAM-1), endothelial microparticles (EMPs), and tissue factor pathway inhibitor (TFPI). Results At baseline, vWF, sVCAM-1, the EMP count, and F1+2 and D-dimer levels were significantly elevated in the patients, including those with no history of clinical thrombosis. Treatment with eculizumab was associated with significant decreases in plasma markers of coagulation activation (F1+2, P =0.012, and D-dimers, P =0.01), and reactional fibrinolysis (P-AP, P =0.0002). Eculizumab treatment also significantly reduced plasma markers of endothelial cell activation (t-PA, P =0.0005, sVCAM-1, P <0.0001, and vWF, P =0.0047) and total ( P =0.0008) and free ( P =0.0013) TFPI plasma levels. Conclusions Our results suggest a new understanding of the contribution of endothelial cell activation to the pathogenesis of thrombosis in PNH. The terminal complement inhibitor, eculizumab, induced a significant and sustained decrease in the activation of both the plasma hemostatic system and the vascular endothelium, likely contributing to the protective effect of eculizumab on thrombosis in this setting.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    83
    Citations
    NaN
    KQI
    []