Secreted HoxA3 Promotes Epidermal Proliferation and Angiogenesis in Genetically Modified Three-Dimensional Composite Skin Constructs
2014
Objective: Homeobox (HOX) transcription factors coordinate gene expression in wound repair and angiogenesis. Previous studies have shown that gene transfer of HoxA3 to wounds of diabetic mice accelerates wound healing, increasing angiogenesis and keratinocyte migration. In this study, we examined whether HoxA3 can also improve angiogenesis, epidermal integrity, and viability of composite skin grafts. Approach: To determine the effects of HoxA3 on composite skin grafts, we constructed bilayered composite grafts incorporating fibroblasts engineered to constitutively secrete HoxA3. We then transplanted these composite grafts in vivo. Results: The composite grafts produced a stratified epidermal layer after seventeen days in culture and following transplantation in vivo, these grafts exhibit normal epidermal differentiation and reduced contraction compared to controls. In addition, HoxA3 grafts showed increased angiogenesis. Quantitative polymerase chain reaction (PCR) analyses of HoxA3 graft tissue reveal an...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
30
References
3
Citations
NaN
KQI