Effect of mobile ions on ultrathin silicon-on-insulator-based sensors

2010 
The presence of mobile Na+ and K+ ions in biological solutions often lead to instabilities in metal-oxide-semiconductor devices and is therefore an important consideration in developing sensor technologies. Permanent hysteresis is observed on silicon-on-insulator field-effect-transistors based sensors after exposure to Na+-based buffer solutions but not after exposure to K+-based solutions. This behavior is attributed to the difference in mobilities of the ions in silicon dioxide. Mobile charge measurements confirm that ions can be transferred from the solution into the oxide. Self-assembled monolayers are shown to provide protection against ion diffusion, preventing permanent hysteresis of the sensors after exposure to solutions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    16
    Citations
    NaN
    KQI
    []