Effects of low-molecular-weight organic ligands and phosphate on DNA adsorption by soil colloids and minerals.

2007 
Abstract Adsorption of DNA on montmorillonite, kaolinite, goethite and soil clays from an Alfisol in the presence of citrate, tartrate and phosphate was studied. A marked decrease in DNA adsorption was observed on montmorillonite and kaolinite with increasing anion concentrations from 0 to 5 mM. However, the amount of DNA adsorbed by montmorillonite and kaolinite was enhanced when ligand concentration was higher than 5 mM. In the system of soil colloids and goethite, with the increase of anion concentrations, a steady decrease was found and the ability of ligands in depressing DNA adsorption followed the sequence: phosphate > citrate > tartrate. Compared to H 2 O 2 -treated clays (inorganic clays), a sharp decrease in DNA adsorption was observed on goethite and organo-mineral complexes (organic clays) with increasing ligand concentrations. The results suggest that the influence of anions on DNA adsorption varies with the type and concentration of anion as well as the surface properties of soil components. Introduction of DNA into the system before the addition of ligands had the greatest amount of DNA adsorption on soil colloids and goethite. Organic and inorganic ligands promoted DNA adsorption on montmorillonite and kaolinite when ligands were introduced into the system before the addition of DNA. The results obtained in this study have important implications for the understanding of the persistence and fate of DNA in soil environments especially rhizosphere soil where various organic and inorganic ligands are active.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    34
    Citations
    NaN
    KQI
    []