T2-FDL: A robust sparse representation method using adaptive type-2 fuzzy dictionary learning for medical image classification

2020 
Abstract In this paper, a robust sparse representation for medical image classification is proposed based on the adaptive type-2 fuzzy learning (T2-FDL) system. In the proposed method, sparse coding and dictionary learning processes are executed iteratively until a near-optimal dictionary is obtained. The sparse coding step aiming at finding a combination of dictionary atoms to represent the input data efficiently, and the dictionary learning step rigorously adjusts a minimum set of dictionary items. The two-step operation helps create an adaptive sparse representation algorithm by involving the type-2 fuzzy sets in the design process of image classification. Since the existing image measurements are not made under the same conditions and with the same accuracy, the performance of medical diagnosis is always affected by noise and uncertainty. By introducing an adaptive type-2 fuzzy learning method, a better approximation in an environment with higher degrees of uncertainty and noise is achieved. The experiments are executed over two open-access brain tumor magnetic resonance image databases, REMBRANDT and TCGA-LGG, from The Cancer Imaging Archive (TCIA). The experimental results of a brain tumor classification task show that the proposed T2-FDL method can adequately minimize the negative effects of uncertainty in the input images. The results demonstrate the outperformance of T2-FDL compared to other important classification methods in the literature, in terms of accuracy, specificity, and sensitivity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    100
    References
    9
    Citations
    NaN
    KQI
    []