Structure and supramolecular architecture of membrane channel-forming peptides

1989 
Abstract Peptides gathering together to induce channels in lipid bilayers may be classified in several categories according to the spatial structures involved. For example, gramicidin A forms intramolecular tubes, alamethicin, bundles of helical rods with intermolecular pores, porins (being proteins, properly speaking) are rich in β-sheets that may form barrels, where as cyclic peptides might stack together resulting in the formation of pores. The chemical structure of these compounds is now well characterized. The transmembrane electrical signals that they transmit are also typical of the particular supramolecular configurations (or architecture). Investigations in this field are thus relevant to structure-function relationship studies due to the availability of natural or synthetic analogues allowing the measurement of the influence of physicochemical parameters upon the energy profiles of the pores. Consequently, questions such as the existence and probabilities of conductance substrates, their voltage-dependence and their ion or molecular selectivity can be tackled. Today, the loosest aspect of these studies lies in the actual molecular conformations and architecture in the membranes of the peptide aggregates, the knowledge of which remains imprecise, even ‘at rest’ in the best-studied cases. This review attempts to point out still unresolved questions and to propose some plausible approaches concerning, for example: 1) the configurations of the molecular aggregates responsible for ion transfer; 2) the mechanisms for channel-opening and closing (gating); 3) the eventual cooperative phenomena between channels, via the bilayer or interfacial components. Possible applications of these structures will be tentatively outlined.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    28
    Citations
    NaN
    KQI
    []