Cu2+-modified MOF as laccase-mimicking material for colorimetric determination and discrimination of phenolic compounds with 4-aminoantipyrine.

2021 
Based on the laccase-mimicking activity of Cu2+-modified University of Oslo (UiO) metal-organic framework (UiO-67-Cu2+), we developed a colorimetric sensor array for distinguishing a series of phenols with different number and position of substituted hydroxyl group (-OH) and different substituent group on the benzene ring, including phenol, catechol, quinol, resorcinol, pyrogallol, phloroglucinol, o-chlorophenol, o-aminophenol, and o-nitrophenol. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of phenolic compounds were obtained by theoretical calculation. The results show that the lower the LUMO energy level, the easier the chromogenic reaction occurs. The UiO-67-Cu2+-catalyzed phenol chromogenic reaction showed a good linearity in the range from 0.1 to 200 μM with limit of detection approximately 61 nM. Through the detection of phenol in tap water and river water, the recovery rate and RSD (n = 3) were calculated as 94.1~103% and 1.0~3.3, respectively, showing good recovery, reliable results, and outstanding stability. Therefore, the proposed colorimetric sensor array will have a great potential for the detection of phenols in the environment. Schematic presentation of a simple and sensitive colorimetric strategy based on the laccase-mimicking activity of Cu2+-modified UiO-type metal-organic framework (MOFs, Uio-67-Cu2+) to distinguish phenols with analogous structures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []