Variability of surface climate in simulations of past and future

2020 
Abstract. It is virtually certain that the mean surface temperature of the Earth will continue to increase under realistic emission scenarios. Yet comparatively little is known about future changes in climate variability. We explore changes in climate variability over the large range of climates simulated by the Coupled Model Intercomparison Project Phases 5 and 6 (CMIP5/6) and the Paleoclimate Modeling Intercomparison Project Phase 3 (PMIP3). This consists of time slices of the Last Glacial Maximum, the Mid Holocene and idealized warming experiments (1 % CO2) and abrupt4×CO2), and encompasses climates with a range of 12 K of global mean temperature change. We examine climate variability from different perspectives: the local interannual change, coherent climate modes and through compositing extremes. The change in the interannual variability of precipitation is strongly dependent upon the local change in the total amount of precipitation. Meanwhile only over tropical land is the change in the interannual temperature variability positively correlated to temperature change, and then weakly. In general, temperature variability is inversely related to mean temperature change – with analysis of power spectra demonstrating that this holds from intra-seasonal to multi-decadal timescales. We systematically investigate changes in the standard deviation of modes of climate variability, such as the North Atlantic Oscillation, with global mean temperature change. While several modes do show consistent relationships (most notably the Atlantic Zonal Mode), no generalisable pattern emerges. By compositing extreme precipitation events across the ensemble, we demonstrate that the atmospheric drivers dominating rainfall variability in Mediterranean climates persist throughout palaeoclimate and future simulations. The robust nature of the response of climate variability, between both cold and warm climates and across multiple timescales, suggests that observations and proxy reconstructions could provide a meaningful constraint on climate variability in future projections.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    117
    References
    6
    Citations
    NaN
    KQI
    []