Offline handwritten Devanagari word recognition: Information fusion at feature and classifier levels

2015 
This article presents our recent study on fusion of information at feature and classifier output levels for improved performance of offline handwritten Devanagari word recognition. We consider here two state-of-the-art features, viz., Directional Distance Distribution (DDD) and Gradient-Structural-Concavity (GSC) features along with multi-class SVM classifiers. Here, we study various combinations of DDD features along with one or more features from the GSC feature set. We experiment by presenting different combined feature vectors as input to SVM classifiers. Also, the output vectors of different SVM classifiers fed with different feature vectors are combined by another SVM classifier. The combination of the outputs of two SVMs each being fed with a different feature vector provides superior performance to the performance of a single SVM classifier fed with the combined feature vector. Experimental results are obtained on a large handwritten Devanagari word sample image database of 100 Indian town names. The recognition results on its test samples show that SVM recognition output of DDD features combined with the SVM output of GSC features improves the final recognition accuracy significantly.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    9
    Citations
    NaN
    KQI
    []