Adjustment for energy intake in nutritional research: a causal inference perspective

2021 
Background Four models are commonly used to adjust for energy intake when estimating the causal effect of a dietary component on an outcome; 1) the "standard model" adjusts for total energy intake, 2) the "energy partition model" adjusts for remaining energy intake, 3) the "nutrient density model" rescales the exposure as a proportion of total energy, and 4) the "residual model" indirectly adjusts for total energy by using a residual. It remains underappreciated that each approach evaluates a different estimand and only partially accounts for confounding by common dietary causes. Objective To clarify the implied causal estimand and interpretation of each model and evaluate their performance in reducing dietary confounding. Design Semi-parametric directed acyclic graphs and Monte Carlo simulations were used to identify the estimands and interpretations implied by each model and explore their performance in the absence or presence of dietary confounding. Results The "standard model" and the mathematically identical "residual model" estimate the average relative causal effect (i.e., a "substitution" effect) but provide biased estimates even in the absence of confounding. The "energy partition model" estimates the total causal effect but only provides unbiased estimates in the absence of confounding or when all other nutrients have equal effects on the outcome. The "nutrient density model" has an obscure interpretation but attempts to estimate the average relative causal effect rescaled as a proportion of total energy intake. Accurate estimates of both the total and average relative causal effects may instead be estimated by simultaneously adjusting for all dietary components, an approach we term the "all-components model." Conclusion Lack of awareness of the estimand differences and accuracy of the four modelling approaches may explain some of the apparent heterogeneity among existing nutritional studies and raise serious questions regarding the validity of meta-analyses where different estimands have been inappropriately pooled.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    2
    Citations
    NaN
    KQI
    []