Synthesis of high-effective steel corrosion inhibitors in water-oil mixtures

2020 
It is a relevant and practically important task for environmental protection to devise effective means to protect metals against corrosion in aggressive media containing water, petroleum products, carbolic acids, and mineral salts. To stop corrosion, corrosion inhibitors are used that must be constantly improved and whose composition must be properly adjusted. The main drawback of the highly effective inhibitors based on alkyl imidazolines, a mixture of alkyl imidazolines with alkyl pyridinium and/or quaternary ammonium compounds soluble in a methanol medium, is their high prices at relatively significant consumption in the corrosive environment. This paper reports the synthesis of steel corrosion inhibitors in oil-containing aqueous environments that meet the stricter ecological and economic requirements. It has been shown that increasing the level of water mineralization improves the corrosive activity of aqueous environments relative to unalloyed steels. The presence of carbon dioxide, hydrogen sulfide, or carboxylic acids leads to the oxidation of water-oil mixtures resulting in the increased rate of steel corrosion. We have studied the effectiveness of the synthesized inhibitors based on oil and polyethylene polyamines containing imidazolines. At a temperature of 80 °C, the mixture that contained 200 cm3of a 3 % sodium chloride solution, 800 cm3of oil, and at the concentration of acetic acid of 0.5 and 3.0 g/dm3 at the inhibitor dose of 50 mg/dm3, has reached the degree of protection of steel against corrosion at the level of 90–92 %. Based on a full factorial experiment, the regression equation has been derived that makes it possible to easily enough calculate an optimal dose of the steel corrosion inhibitor in water-oil mixtures. It has been shown that the synthesized inhibitor shows prospects for protecting metals against corrosion both in the mineralized waters containing oil and in the presence of petroleum products containing water
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    1
    Citations
    NaN
    KQI
    []