Designing oxidation resistant ultra-high temperature ceramics through the development of an adherent native thermal barrier

2019 
Abstract We present a design concept for developing ZrB 2 -SiC-AlN composites with enhanced oxidative stability at ultra-high temperatures (∼2000 °C) and low pressures (100 Torr). The oxidative stability of these materials arises from a protective silica based scale. However, active oxidation of SiC above 1700 °C presents a challenge, which we circumvent through the in-situ growth of a zirconia layer that serves as a thermal barrier, ensuring that the effective temperature at the zirconia/Si rich subscale is less than the active oxidation temperature. The design concept is validated by a series of ultra-high temperature oxidation experiments under static as well as cyclic conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    6
    Citations
    NaN
    KQI
    []