Piston geometry effects in a light-duty, swirl-supported diesel engine: Flow structure characterization:

2018 
This work studied how in-cylinder flow structure is affected in a light-duty, swirl-supported diesel engine when equipped with three different piston geometries: the first two featuring a conventional re-entrant bowl, either with or without valve cut-outs on the piston surface and the third featuring a stepped-lip bowl. Particle image velocimetry experiments were conducted inside an optical engine to measure swirl vortex intensity and structure during the intake and compression strokes. A full computational model of the optical diesel engine was built using the FRESCO code, a recently developed object-oriented parallel computational fluid dynamics platform for engine simulations. The model was first validated against the measured swirl-plane velocity fields, and the simulation convergence for multiple cycles was assessed. Flow topology was studied by addressing bulk flow and turbulence quantities, including swirl structure, squish flux, plus geometric and operating parameters, such as the presence of valv...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    18
    Citations
    NaN
    KQI
    []