Hydralazine Modifies Aβ Fibril Formation and Prevents Modification by Lipids in Vitro

2010 
Lipid oxidative damage and amyloid β (Aβ) misfolding contribute to Alzheimer's disease (AD) pathology. Thus, the prevention of oxidative damage and Aβ misfolding are attractive targets for drug discovery. At present, no AD drugs approved by the Food and Drug Administration (FDA) prevent or halt disease progression. Hydralazine, a smooth muscle relaxant, is a potential drug candidate for AD drug therapy as it reduces Aβ production and prevents oxidative damage via its antioxidant hydrazide group. We evaluatedtheefficacyofhydralazine,andrelatedhydrazides,inreducing(1)Aβmisfoldingand(2)Aβprotein modification by the reactive lipid 4-hydroxy-2-nonenal (HNE) using transmission electron microscopy and Western blotting. While hydralazine did not prevent Aβ aggregation as measured using the protease protectionassay,thereweremoreoligomericspeciesobservedbyelectronmicroscopy.Hydralazineprevented lipid modification of Aβ, and Aβ was used as a proxy for classes of proteins which either misfold or are modified by HNE. All of the other hydrazides prevented lipid modification of Aβand also did not prevent Aβ aggregation. Surprisingly, a few of the compounds, carbazochrome and niclosamide, appeared to augment Aβ formation. Thus, hydrazides reduced lipid oxidative damage, and hydralazine additionally reduced Aβ misfolding. While hydralazine would require specific chemical modifications for use as an AD therapeutic itself (to improve blood brain barrier permeability, reduce vasoactive side effects, and optimization for amyloid inhibition), this study suggests its potential merit for further AD drug development.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    82
    References
    14
    Citations
    NaN
    KQI
    []