Conditional and unconditional genome-wide association study reveal complicate genetic architecture of human body weight and impacts of smoking.

2020 
To reveal the impacts of smoking on genetic architecture of human body weight, we conducted a genome-wide association study on 5,336 subjects in four ethnic populations from MESA (The Multi-Ethnic Study of Atherosclerosis) data. A full genetic model was applied to association mapping for analyzing genetic effects of additive, dominance, epistasis, and their ethnicity-specific effects. Both the unconditional model (base) and conditional model including smoking as a cofactor were investigated. There were 10 SNPs involved in 96 significant genetic effects detected by the base model, which accounted for a high heritability (61.78%). Gene ontology analysis revealed that a number of genetic factors are related to the metabolic pathway of benzopyrene, a main compound in cigarettes. Smoking may play important roles in genetic effects of dominance, dominance-related epistasis, and gene-ethnicity interactions on human body weight. Gene effect prediction shows that the genetic effects of smoking cessation on body weight vary from different populations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    1
    Citations
    NaN
    KQI
    []