Sarcoplasmic reticulum function and carnitine palmitoyltransferase-1 inhibition during progression of heart failure.

2000 
Failing cardiac hypertrophy is associated with an inadequate sarcoplasmic reticulum (SR) function. The hypothesis was examined that pressure overloaded hearts fail to increase SR Ca2+ uptake rate proportionally to the hypertrophy and that carnitine palmitoyltransferase-1 inhibition by etomoxir ((±)-ethyl 2[6(4-chlorophenoxy)hexyl] oxirane-2-carboxylate) can counteract this process. Severe left ventricular pressure overload was induced in rats by constricting the ascending aorta for 8, 10, 14 and 28 weeks leading to cardiac hypertrophy (+62–+103% of sham-operated rats) and pulmonary congestion. Homogenate oxalate-facilitated SR Ca2+ uptake rate g wet wt−1 was reduced (P<0.05) by 29.9±1.8% irrespective of phospholamban phosphorylation (in the presence of catalytic subunit of protein kinase A) and inhibition of SR Ca2+ release channel by ruthenium red. SERCA2 protein level was reduced (P<0.05) by 30.4±0.8%. SR Ca2+ uptake rate was inversely correlated (P<0.05) with left ventricular weight but was not affected by the occurrence of pulmonary congestion. Because SR Ca2+ uptake rate of whole ventricles was not reduced, a hypertrophy proportional dilution of SR Ca2+ uptake has to be inferred which precedes pulmonary congestion. Treatment with etomoxir (15 mg kg body wt−1 day−1 for 10 weeks) did not affect left ventricular weight but decreased (P<0.05) the right ventricular hypertrophy related to pulmonary congestion. In parallel, SR Ca2+ uptake rate of left ventricle and myosin isozyme V1 were increased (P<0.05). Etomoxir represents a candidate approach for prevention of heart failure by inducing a hypertrophy proportional increase in SR Ca2+ uptake rate. British Journal of Pharmacology (2000) 131, 1748–1756; doi:10.1038/sj.bjp.0703741
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    34
    Citations
    NaN
    KQI
    []