In Situ Synthesis and Characterization of Ge Embedded Electrospun Carbon Nanostructures as High Performance Anode Material for Lithium-Ion Batteries

2016 
While active materials based on germanium (Ge) are considered as a promising alternative anodic electrode due to their relatively high reversible capacity and excellent lithium-ion diffusivity, the quite unstable structural/electrochemical stability and severe volume expansion or pulverization problems of Ge electrodes remain a considerable challenge in lithium ion batteries (LIBs). Here, we present the development of Ge embedded in one-dimensional carbon nanostructures (Ge/CNs) synthesized by the modified in situ electrospinning technique using a mixed electrospun solution consisting of a Ge precursor as an active material source and polyacrylonitrile (PAN) as a carbon source. The as-prepared Ge/CNs exhibit superior lithium ion behavior properties, i.e., highly reversible specific capacity, rate performance, Li ion diffusion coefficient, and superior cyclic stability (capacity retention: 85% at 200 mA g–1) during Li alloying/dealloying processes. These properties are due to the high electrical conductivi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    44
    Citations
    NaN
    KQI
    []