Comparative Transcriptome Analysis of Anthurium “Albama” and Its Anthocyanin-Loss Mutant

2015 
Anthurium is one of the most important tropical ornamental plants in the world. The traded value of anthurium is second only to that of tropical orchids among the tropical flowers. The spathe is the main ornamental organ and its color variation mainly arises from anthocyanin contents. Understanding the molecular regulation of spathe color will accelerate new variety creation of anthurium. To announce gene expression differences between Anthurium andraeanum ‘Albama’ and its one unique anthocyanin-loss mutant, we collected spathes of the wild-type and the mutant from two stages in spathe development (the flower separates protrude from the sheath and the spathe is fully expanded) and extracted total RNAs for transcriptome profiling. Using short read sequencing technology (Illumina), 51,955,564, 53,822,224, 54,221,990 and 52,276,418 sequencing raw reads, respectively, for wild-type and mutant in the two stages were assembled de novo into 111,268 unique sequences (unigenes) with a mean length of 652 bp. 47,563 unigenes had significant hits to the sequences in the Nr database, and 32,768 unigenes showed significant similarity to known proteins in the Swiss-Prot database. 28,350 and 19,293 unigenes had significant similarity to existing sequences in the KEGG and COG databases, respectively. Further, analysis of differentially expressed genes in the comparison between wild-type and mutant and between the two different developmental stages was carried out, indicating that the expression of an extensive set of genes changed as the result of mutation. Taken together, these data demonstrated that the Illumina sequencing allowed de novo transcriptome assembly and could obtain differentially expressed genes between A. andraeanum wild-type and the anthocyanin-loss mutant. The expression differences of AN2 and UFGT might cause the anthocyanin-loss mutation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    15
    Citations
    NaN
    KQI
    []