language-icon Old Web
English
Sign In

Topological Graph Persistence

2017 
Graphs are a basic tool for the representation of modern data. The richness of the topological information contained in a graph goes far beyond its mere interpretation as a one-dimensional simplicial complex. We show how topological constructions can be used to gain information otherwise concealed by the low-dimensional nature of graphs. We do that by extending previous work of other researchers in homological persistence, by proposing novel graph-theoretical constructions. Beyond cliques, we use independent sets, neighborhoods, enclaveless sets and a Ramsey-inspired extended persistence.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    4
    Citations
    NaN
    KQI
    []