Optical super-resolution sensing of a trapped ion's wave packet size.

2021 
We demonstrate super-resolution optical sensing of the size of the wave packet of a single trapped ion. Our method is inspired by the well known ground state depletion (GSD) technique. Here, we use a hollow beam to strongly saturate a dipole-forbidden transition around a sub-diffraction limited area at its center and observe state dependent fluorescence. By spatially scanning this laser beam over a single trapped $^{40}\mathrm{Ca}^+$ ion, we are able to distinguish the wave packet sizes of ions cooled to different temperatures. Using a depletion beam waist of $4.2(1)\,\mu$m we reach a spatial resolution which allows us to determine a wave packet size of $39(9)\,$nm for a near ground state cooled ion. This value matches an independently deduced value of $32(2)\,$nm, calculated from resolved sideband spectroscopy measurements. Finally, we discuss the ultimate resolution limits of our adapted GSD imaging technique in the view of applications to direct quantum wave packet imaging.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []